Estimation, computation, and experimental correction of molecular zero-point vibrational energies.

نویسندگان

  • Gábor I Csonka
  • Adrienn Ruzsinszky
  • John P Perdew
چکیده

For accurate thermochemical tests of electronic structure theory, accurate true anharmonic zero-point vibrational energies ZPVE(true) are needed. We discuss several possibilities to extract this information for molecules from density functional or wave function calculations and/or available experimental data: (1) Empirical universal scaling of density-functional-calculated harmonic ZPVE(harm)s, where we find that polyatomics require smaller scaling factors than diatomics. (2) Direct density-functional calculation by anharmonic second-order perturbation theory PT2. (3) Weighted averages of harmonic ZPVE(harm) and fundamental ZPVE(fund) (from fundamental vibrational transition frequencies), with weights (3/4, 1/4) for diatomics and (5/8,3/8) for polyatomics. (4) Experimental correction of the PT2 harmonic contribution, i.e., the estimate ZPVE(true)PT2 + (ZPVE(fund)expt - ZPVE(fund)PT2) for ZPVE(true). The (5/8,3/8) average of method 3 and the additive correction of method 4 have been proposed here. For our database of experimental ZPVE(true), consisting of 27 diatomics and 8 polyatomics, we find that methods 1 and 2, applied to the popular B3LYP and the nonempirical PBE and TPSS functionals and their one-parameter hybrids, yield polyatomic errors on the order of 0.1 kcal/mol. Larger errors are expected for molecules larger than those in our database. Method 3 yields errors on the order of 0.02 kcal/mol, but requires very accurate (e.g., experimental, coupled cluster, or best-performing density functional) input harmonic ZPVE(harm). Method 4 is the best-founded one that meets the requirements of high accuracy and practicality, requiring as experimental input only the highly accurate and widely available ZPVE(fund)expt and producing errors on the order of 0.05 kcal/mol that are relatively independent of functional and basis set. As a part of our study, we also test the ability of the density functionals to predict accurate equilibrium bond lengths and angles for a data set of 21 mostly polyatomic molecules (since all calculated ZPVEs are evaluated at the correspondingly calculated molecular geometries).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Vibrational Zero-Point Energies: Diatomic Molecules

Vibrational zero-point energies ZPEs , as determined from published spectroscopic constants, are derived for 85 diatomic molecules. Standard uncertainties are also provided, including estimated contributions from bias as well as the statistical uncertainties propagated from those reported in the spectroscopy literature. This compilation will be helpful for validating theoretical procedures for ...

متن کامل

AB Initio Study of Molecular Struture, Energetic and Vibrational Spectra of (GaN)4 Nanosemiconductor

In recent years there has been considerable interest in the structures, energies and thermodynamics of(GaN)4 clusters and it is the subject of many experimental and theoretical studies because of theirfundamental importance in chemical and physical process. All calculation of this study is carried outby Gaussian 98. Geometry optimization for (GaN)4 nanocluster are be fulfilled at B3LYP, B1LYPan...

متن کامل

Structures, energetics, vibrational spectra of NH4+ (H2O)(n=4,6) clusters: Ab initio calculations and first principles molecular dynamics simulations.

Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identi...

متن کامل

Comparison of Smooth Hartree-Fock Pseudopotentials.

The accuracy of two widely used scalar relativistic Hartree-Fock pseudopotentials, the Trail-Needs-Dirac-Fock (TNDF) and the Burkatzki-Filippi-Dolg (BFD) pseudopotentials, is assessed. The performance of the pseudopotentials is tested for a chemically representative set of 34 first-row molecules. All comparisons are made at the Hartree-Fock level of theory, and both sets of pseudopotentials giv...

متن کامل

DFT and HF Studies: Geometry, Hydrogen Bonding, Vibrational Frequencies and Electronic Properties of Enaminones and Their Complexes with Transition Metals

Enaminones are those structures made up three various functional groups including carbonyl, alkeneand amine groups which arelocated along with each other in a conjugate fashion. These compoundsare of much attention due to special characteristics and numerous applications. In the paper, sixvarious enaminone structures were theoretically optimized and after concluding, were compared withequivalen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 109 30  شماره 

صفحات  -

تاریخ انتشار 2005